

Addition			
Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group on in a bar. 		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to move } \\ \text { into the abstract. } \end{array} \end{aligned}$

Starting at the bigger number and counting on	Start with the langer number on the bead string and ther count on to the smallen number I by I to find the answer.	$12+5=17$ Start at the langen number on the number line and count on in ones on in one jump to find the answer.	$5+12=17$ Place the langer number i your head and count on t smaller number to-find $y c$ answer.

Adding three single digits,	$4+7+6=17$ Put 4 and 6 together to make IO. Add on 7. Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the thind digit.		$\begin{aligned} \frac{4+7+6}{40} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers, that make 10 and then add on the remainder.
Column method no regrouping	$24+15=$ Add together the ones first ther add the tens. Use the Base IO blocks first before moving onto place walue counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them tosolve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
	\odot 0 $\odot \bigcirc \bigcirc \odot$ 0000 \odot 00000		

Column method

regrouping

Make both numbers on a place value grid.

Childrer can draw a pictorial representation of the columns and place walue counters, to-further support thein learning and understanding.

Start by partitioning the numbers before moving on to clearly shom the exchange below the addition.

```
20 + 5
40 + 8
60+13 = 73
```

As the children
move on, introduce
decimals, with the same
number of decimal places
and different. Money can
be used here.
72.8
$+54.6$
$\underline{127.4}$
11

23 . 3 o 1
$\begin{array}{rrrrrr}2 & 3 & \cdot & 5 & 0 & 1 \\ & 9 & \cdot & 0 & 8 & 0\end{array}$

5	9

+	1	.	3	0	0
9	3	.	5	1	1
2	1		2		

Subtraction

| Objective and
 Strategies, | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Taking amay
 ones, | Use physical objects, counters, cubes etc
 to shom hom objects can be taker amay. | Cross out drawn objects to show what has been taken
 amay. | $18-3=15$ |

Find the difference	Compane amounts and objects to find the difference. Use cubes to build towers or make bans to - find the difference Use basic ban models with items to find the difference	Count on to find the difference. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Dram bans, to 22 find the difference between 2 numbens.	Hannah has 23 sandmiches, Heler has I5 sandwiches. Find the difference between the number of sandwiches.
Make 10	Link to addition use the part whole model to help explain the inverse betweer addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to shom the part part whote model.	5 10 Move to using numbers, within the part whole model.

Make 14 on the ter frame．Take amay the foun first to make 10 and then takeaway one more so you have taker amay 5．You are left with the answer of

Start at 13．Take amay 3 to reach 10．Ther take amay the remaining 4 so you have taker amay 7 altogether．You have reached your anower．
$16-8=$

How many do we take off to reach the next IO？

Hom many do we have left to take off？

Column method without regrouping	${ }^{\text {rom }}$	oma
	／II	000
	／／1／	1

Use Base 10
to make the
bigger number
then take the
smaller
number away．

هmman	\square	$\begin{gathered} \text { calculations } \\ \frac{52}{2} \\ \hline 2 \end{gathered}$	Dram the Base
盟䍰盢	－axa		10 on place value
			ongside the
			mritten

$$
\begin{gathered}
47-24=23 \\
40+7 \\
-\frac{20+4}{20+3} \\
\hline 2
\end{gathered}
$$

Shom hom you partition numbers to subtract．
Again make

the largen number first．

This will lead to a clear writter column subtraction．

Column method with regrouping

Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.

Make the langer number with the place value counters

Start with the ones, can I take amay 8 from 4 easily? I need to exchange one of my tens for ter ones.

Now I can subtract my ones.

Dram the counters onto a place value grid and shom what you have taker amay by crossing the counters, out as well
as clearly showing the exchanges you make.

Wher confident, children can find thein oun may to recond the exchange/regrouping.

Just writing the numbers as shown here shows that the

Children can start thein formal writter method by partitioning the number into clear place
value columns.

child undenstands the method and knows when to exchange/regroup.

Moving formand the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

$$
\begin{array}{ccccc}
& \begin{array}{ccc}
5 & 12 & \\
2 & 6 & 3 \\
& & . \\
& 2 & 6
\end{array} & 0 \\
\hline 2 & 3 & 6 & . & 5 \\
\hline
\end{array}
$$

Multiplication			
Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to. double 4 is 8 $4 \times 2=8$ double a number.	Dram pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples,	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ 5, 10, 15, 20, 25, 30

Grid Method
Show the link with amays to finst introduce the grid method.

4 rams
of 10
4 nows of 3

Move on to using Base 10 to move tomands a more compact method.

x	T	U

4 rows of 13

Move on to place walue counters to shom how we are finding groups of a number. We are multiplying by 4 so we need 4 nows.

Children can represent the work they have done with place value counters in a may that they understand.

They can draw the counters, using colours, to show different amounts on just use cincles in the different columns to shom thein thinking as shomin below.

Start with multiplying by one digit numbers and shoming the clear addition alongside the grid.

\mathbf{x}	30	5
7	210	35

$$
210+35=245
$$

Moving formand, multiply by a 2 digit number showing the different rows within the grid method.

Column
multiplication

Children can continue to be supported by place value counters, at the stage of multiplication.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens, which they note below.

Ban modelling and number lines can support learnens when solving problems with multiplication alongside the formal writter methods.

Stant with long
multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer.

32
$\times \quad 24$
8
$12 \times 2)$

$\begin{array}{ll}120 & (4 \times 30)\end{array}$
$40 \quad(20 \times 2)$
$\frac{600}{768}(20 \times 30)$

Division			
Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects, into groups,	I have 10 cubes, can you share them equally in 2 groups?	Childner use pictures on shapes to shane quantities.	Shane 9 buns between three people. $q \div 3=3$

Division as grouping

Divide quantities into equal groups. Use cubes, counters, objects on place value counters to aid understanding.

$96 \div 3=32$

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$
20 \div 5=?
$$

\qquad

